Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 31: 105856, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32613042

RESUMO

The data article refers to the paper "Distribution and grazing of the dominant mesozooplankton species in the Yenisei estuary and adjacent shelf in early summer (July 2016)" (Drits et al., 2020). The data were collected along quasi-longitudinal transect "Yenisei estuary - Kara Sea shelf" on 24-28 July 2016. Here we present data on the spatial and vertical distribution, demographic structure and gut pigment content of the dominant zooplankton species as well as the grazing impact on autotrophic phytoplankton in the three distinguished zones: freshwater zone, frontal zone of the Yenisei plume and marine shelf zone. The related article (Drits et al., 2020) considers the structure and functioning of zooplankton community in relation to environmental characteristics such as temperature, salinity, phytoplankton abundance, timing of ice retreat. Information presented in this article can be used by marine biologists for studies of structure and functioning of estuarine pelagic communities, ecology of zooplankton in the Siberian seas. Besides the data could provide a baseline for the assessment of the ecological role played by climate change events (e.g., increased precipitation, permafrost thawing, elevated river discharge) on the Arctic ecosystems.

2.
Bull Math Biol ; 77(10): 1886-908, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26403421

RESUMO

We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.


Assuntos
Eutrofização , Cadeia Alimentar , Animais , Ecossistema , Meio Ambiente , Conceitos Matemáticos , Modelos Biológicos
3.
Mar Pollut Bull ; 95(1): 28-39, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25892079

RESUMO

PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Política Ambiental , Oceanos e Mares , Monitoramento Ambiental/métodos , Europa (Continente) , Pressão
5.
J Theor Biol ; 262(2): 346-60, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19782091

RESUMO

Complex nature of foraging behaviour of zooplankton makes it difficult to describe adequately zooplankton grazing in models with vertical space. In mean-field models (based on systems of PDEs or coupled ODEs), zooplankton feeding at a given depth is normally computed as the product of the local functional response and the zooplankton density at this depth. Such simplification is often at odds with field observations which show the absence of clear relationship between intake rates of organisms and the ambient food density. The observed discrepancy is generic and is often caused by fast non-synchronous vertical migration of organisms with different nutrition status. In this paper, we suggest a simple way of incorporating unsynchronized short-term vertical migration of zooplankton into the mean-field modelling framework. We compute grazing of zooplankton in each layer depending on feeding activity of organisms in the layer. We take into account grazing impact of animals which are in the active phase of foraging cycle at the given moment of time but neglect the impact of animals which are in the non-active phase of the cycle (e.g. digesting food). Unsynchronized vertical migration determines the vertical distribution of actively feeding animals in layers depending on vertical distribution of food. In this paper, we compare two generic plankton models: (i) a model based on 'classical' grazing approach and (ii) a model incorporating food-mediated unsynchronized vertical migration of zooplankton. We show that including unsynchronized food-mediated migration would make the behaviour of a plankton model more realistic. This would imply a significant enhancement of ecosystem's stability and some additional mechanisms of regulation of algal blooms. In the system with food-mediated unsynchronized vertical migration, the control of phytoplankton by herbivorous becomes possible even for very large concentrations of nutrients in the water (formally, when the system's carrying capacity tends to infinity).


Assuntos
Migração Animal/fisiologia , Comportamento Alimentar/fisiologia , Alimentos , Modelos Biológicos , Zooplâncton/fisiologia , Absorção , Animais , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...